Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Utilities Tech Outlook
The adoption of electric vehicles and the continuous growth in the use of portable electronic devices are becoming increasingly relevant to solid batteries. Solid-state batteries rely on a solid electrolyte membrane with solid positive and negative electrode materials. To allow charge or discharge, ions travel through an ion-conductive solid matrix. Solid-state batteries are important because the solid electrolytes enable a few technologies that might make batteries more energy dense, which is necessary for modern electric vehicles to have greater range or last longer. While charging a regular lithium-ion battery, a reaction occurs between the liquid lithium salt electrolyte and the carbon electrode that forms a layer that helps protect the carbon and stops the two components from reacting further. This is called a solid electrolyte interface (SEI layer). This very thin and fragile layer mainly determines the battery’s durability.
Check it out - Top Most Battery Technology Solution Provider Companies ( Enevate , INCELL International , Inventus Power )
Tokyo Tech scientists addressed one of the main disadvantages of all-solid-state batteries by developing low-resistance batteries at their electrode/solid electrolyte interface. While the devices they manufactured were promising and in some aspects, much better than conventional Li-ion batteries, the mechanism behind the reduced interface resistance was unclear. The buried interfaces in solid-state batteries could hardly be analyzed without damaging their layers. They suspected that crystallinity played a key role in the definition of interface resistance at the electrode-electrolyte interface. To prove this, two different all- solid- state batteries consisting of electrode and electrolyte layers were manufactured using a pulsed laser deposition technique. By using the X-ray crystal scattering test, scientists found crystallinity present at electrode-electrolyte in one of the batteries prepared with the help of the pulsed laser deposition technique. From these results, the team concluded that a highly crystalline electrode-electrolyte interface actually produced low interface resistance and a high-performance battery.
IMEC, one of the leading R&D and innovation hubs has prepared a prototype battery using solid nanocomposite electrolyte having a capacity of the high conductivity of up to 10 mS/cm and is likely to increase this capacity in future. The prototype battery procured a density of 200 Wh/liter of volumetric energy at a speed of 0.5C. Li-ion has still untapped the potential for further improvements in performance and cost reduction—a solid-state battery must be benchmarked with a moving target. Major manufacturing companies are working toward large scale commercialization of solid-state batteries, which will further boost the market for these batteries in the coming days.
Check Out :
I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info
However, if you would like to share the information in this article, you may use the link below:
www.utilitiestechoutlook.com/news/solidstate-batteries-power-to-electric-vehicles-nwid-211.html