| | DECEMBER 20229Adding a CCUS stage also means we need extra space on site or in surrounding areas, both for physical installation and for any transport links for site servicing and removing the captured carbon.Incentivising the Development of CCUS CCUS processing is expensive, and the operation needs a large amount of energy. This reduces the amount of electricity we can export and impacts the overall cost of a facility. As a result, CCUS developments have stalled. The Department for Business, Energy & Industrial Strategy (BEIS) has received nine applications for funding, which shows that removing the cost barrier could be the catalyst for CCUS development in the UK. The recently released consultation on the UK Emissions Trading Scheme (UK ETS) considers bringing EfWs within its remit to reduce or reverse the cost difference. This is so the market can be levelled, and carbon capture is incentivised. This is a notable legislative change and should ensure that facilities with CCUS can compete with non-equipped EfWs. However, it is not without its issues. The majority of the EfW fleet serves local authorities under long-term contracts, whose terms will dictate the ability to manage increased costs. Negotiations might be needed to understand how any amendments can pinpoint and distribute risks accordingly. Without accompanying landfill tax increases, this could perversely incentivise driving residual waste down the waste hierarchy--reducing the environmental benefit.Installing CCUS--or having to manage emissions through the ETS--will add to the cost of residual waste management. As difficult as this may be, we need to change how we manage our waste to reach net zero. But this added cost can only be worthwhile if it supports the decarbonisation of the waste sector and developing markets for captured CO2.Developing Our Markets BEIS is supporting two CCUS clusters: Northern Endurance Partnership's East Coast Cluster covering the industrial areas around the Humber and Tees estuaries; and HyNet North-West cluster, covering the Mersey and Deeside industrial areas. Phase 1 supported developing infrastructure to transport, compress, and store captured carbon. For the EfWs located around these clusters, there is relatively robust infrastructure and sites for captured carbon, as well as potential for connecting pipelines.For the vast majority of EfW facilities found elsewhere, their location could be a problem and limits their ability to connect to the cluster. The clusters' capacity to deal with facilities from outside their regions is also limited. We could look at developing further cluster locations in the future(such as potentially Aberdeen), however there are limited suitable locations for injecting carbon dioxide--and these do not necessarily align with EfW locations.But finding outlets to store our captured CO2 is a major consideration when we explore future implementation at EfW sites. Securing permanent or long-term sequestration is essential. The most prevalent form of storage is injecting CO2 into hydrocarbon reservoirs to increase oil and gas yields. However, this contradicts our intention to reduce atmospheric CO2 as we lose the benefit of sequestered carbon through the processing and use of the added yield.There are other uses being developed for CO2, such as mineralisation, that could be commercially viable. Other options tend to be stymied by either being too early in development (carbon nanotubes); excessively expensive or relative costs(methanol replacement); low volume and therefore less reliable as a firm market (food & drinks); or only temporary storage (alternative fuels). Chris HudsonInstalling CCUS--or having to manage emissions through the ETS--will add to the cost of residual waste management. As difficult as this may be, we need to change how we manage our waste to reach net zero
< Page 8 | Page 10 >